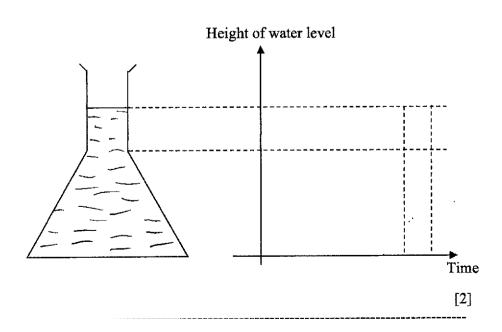
Answer all the questions.

1. Factorise fully $2x^2 + y^2 - 2x - xy^2$.

2. It takes p workers q days to build r houses.

If the number of days is halved and 5r houses are to be built, how many workers must be hired for the job?


Express your answer in terms of p.

Answer:

3. Water is poured at a constant rate into the conical flask as shown below.

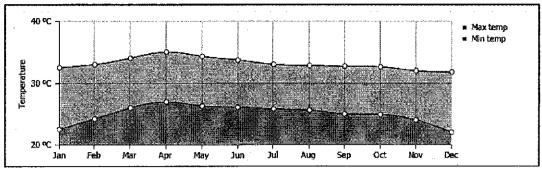
Draw on the axes provided, the change in the water level of the conical flask over time.

Answer

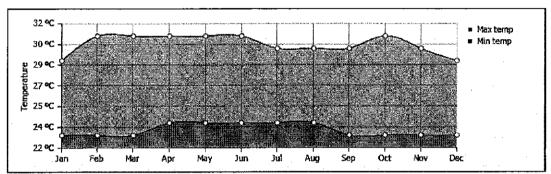
4.	Solve the equation	$(1-x)^2$	$=\frac{9}{4}$
----	--------------------	-----------	----------------

5. A group of 15 students recorded their timings (to the nearest minute), for a 5-km run. The results are represented in the stem and leaf diagram below.

Stem	Lea	af								
2	6	8	8	9						
3 4	0	0	1	3	4	4	4	5	7	9
4										
5										
6	1									


Key: 2|6 means 26 minutes

(a) Find the percentage of students who took at least 35 minutes to complete the run.


Answer:	% [1]
(b) Explain why the mean may not be an appropriate measure these students to complete the 5-km run.	e of average time taken by
Answer :	

.....[1]

6. The line graphs below show the monthly average minimum and maximum temperatures of Bangkok (Thailand) and Singapore, for the year 2020.

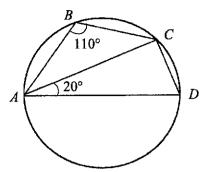
Average min and max temperature, Bangkok Thailand Copyright 2020 www.weather-and-climate.com

Average min and max temperature, Singapore Copyright 2020 www.weather-and-climate.com

(a) Huda claims that Singapore experienced wider differences between the maximum and minimum temperatures.

Explain why the data presented above may have been misleading for Huda.

•••							• • • • • • • • •
***							[1]
(b) (Give a sugg	estion on hov	w the data abo	ove can be p	resented in a c	learer way.	
An	swer :	•••••					•••••
					•••••		[1]


7.	7. A polygon with n sides has two exterior angles 100° and 50°. The remaining $(n-2)$ exterior angles are 14° each.											
	Find n.											
	Answer: n =[2]											
8.	Written as the product of its prime factors, $504 = 2^x \times 3^y \times 7$.											
	(a) Find the values of x and y.											
	Answer: $x =, y =$ [1]											
	(b) The highest common factor and the lowest common multiple of 18 and z are 6 and											
	504 respectively.											
	Find the smallest possible value of z.											
	Answer: smallest $z = \dots [2]$											

	7	
9. Simplify $\left(\frac{x^6}{64}\right)^{-\frac{2}{3}} \div \frac{y^3}{x^6}$.		
Leave your answer in positive index.		
•		
	Answer:	[3]
10. Mr Png bought a massage chair with a monthly instalment of \$195.60 for 18 r	down payment of 15% of the cash price and a months.	
If he paid a total of \$3970.80, find the		
If the part a total of \$3970.00, find the		
-	oubli price of the muslinge onthi.	
_	oush price of the massage ontain.	
	oush price of the massage ontain	
	oush price of the massage ontain	
	oush price of the massage ontain	
	oush price of the massage oma.	
	oush price of the massage onat.	
	Answer:\$. [3]
11. Given that $m = \sqrt{\frac{2m+1+k}{4k}}$, express k	Answer:\$. [3
11. Given that $m = \sqrt{\frac{2m+1+k}{4k}}$, express k	Answer:\$. [3
11. Given that $m = \sqrt{\frac{2m+1+k}{4k}}$, express k	Answer:\$. [3
11. Given that $m = \sqrt{\frac{2m+1+k}{4k}}$, express k	Answer:\$. [3]

Answer: k =[3]

12. The diagram shows a circle with points A, B, C and D on its circumference. Angle $ABC = 110^{\circ}$ and angle $CAD = 20^{\circ}$.

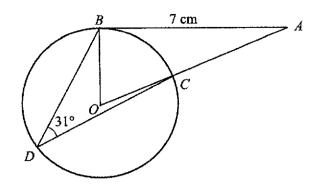
Explain why AD is a diameter of the circle.

Answer:

[3]

13. n is a positive integer.

(a) Show that $(3n-2)^2 - n^2$ is a multiple of 4.


[2]

(b) Hence or otherwise, factorise $(3n-2)^2 - n^2$ fully.

Answer:.....[1]

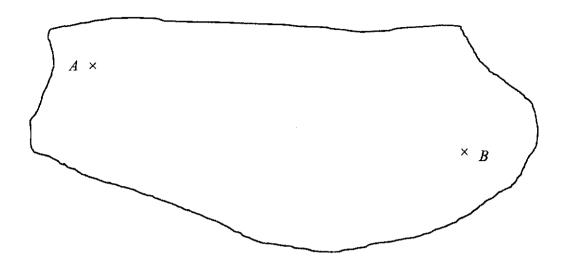
n.
. m [1]
yrene
earest
ion [3]
i

16.

In the diagram, B, C and D are points on a circle.

O is the centre, OCA is a straight line and BA is tangent to the circle at B. Angle $BDC = 31^{\circ}$ and AB = 7 cm.

(a) State the reason why angle $OBA = 90^{\circ}$.

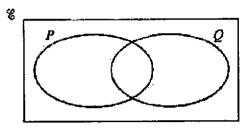

Reason:	[1	1
21000001 111111111111111111111111111111		.1

(b) Find the length of the radius of the circle.

Answer	:		•		•					•	•	•		٠.		•	••	•		•••	cm	[3	
--------	---	--	---	--	---	--	--	--	--	---	---	---	--	----	--	---	----	---	--	-----	----	---	---	--

17. (Diagram is drawn to scale)

The scale of the map below is 1:50 000.



Asher cycles from Point A to Point B at an average speed of 13 km/h.

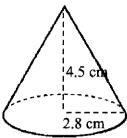
If Asher has to reach point B by 4.30 pm, suggest the latest time he should set off from point A.

Show your working clearly.

18. (a) On the Venn diagram, shade the region which represents $P' \cup Q'$.

[1]

(b) $\varepsilon = \{ x : x \text{ is an integer such that } 5 \le x \le 9 \}$

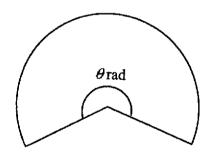

$$A = \{ x : 5 - \frac{x}{2} \ge 1 \}$$

$$B = \{ x : 4x - 1 > 19 \}$$

List the element(s) contained in the set $(A \cap B)$ '.

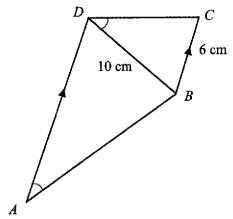
Answer: $(A \cap B)' = \{$ $\}$ [3]

19. The diagram shows a paper cup in a shape of a cone with radius 2.8 cm and vertical height 4.5 cm.


(a) Show that the curved surface area is 14.84 m cm^2 .

Answer:

[2]


(b) The paper cup is cut open to form a sector of a circle with angle θ radians.

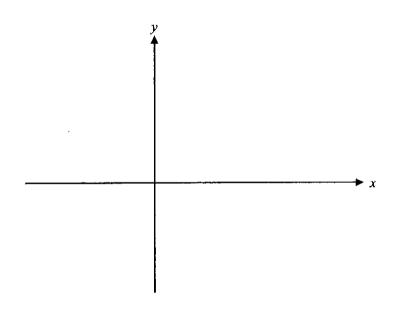
Find angle θ .

Answer: $\theta = \dots$ rad [2]

20. In the diagram, the line AD is parallel to BC and $\angle BAD$ is equal to $\angle CDB$. BC = 6 cm and BD = 10 cm.

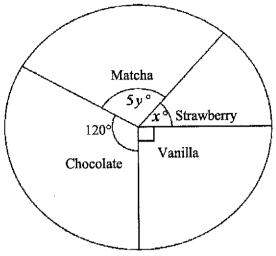
(a)	Explain why $\triangle ABD$ is similar to $\triangle DCB$.
	Answer
	[2]

(b) Find the length of AD.


Answer:	cm [2]

21. The equation of a curve is given by y = x(10-x).

(a) Explain why the maximum value of y is 25.


Answer	·			 	 	
			.,	 	 	
	*******	******		 	 	 •••
******				 	 	 •••

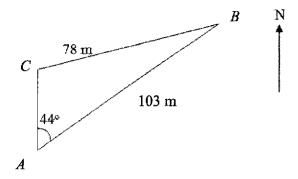
********		*****		 	 	 [3]

(b) Sketch the curve y = x(10-x), showing clearly the intercepts and the maximum point.

[2]

22. The pie chart represented the number of people who chose their favourite milkshake flavour.

(a) Form an equation in terms of x and y.


Answer	*****	Γ.	11	i
AIIBWEI	4 * * * 4 * * * * * * * * * * * * * * *	Ŀ	١,	ı

(b) The ratio of people who chose Strawberry to Matcha flavour was 4:11. Show that 11x - 20y = 0.

[1]

(c) Using your equations from (a) and (b), solve them simultaneously to find the values of x and of y.

23.

A, B and C are 3 points on level ground. BC = 78 m, AB = 103 m and angle $BAC = 44^{\circ}$. C is due north of A.

(a) Calculate the bearing of A from B.

Answer :	:	° [1]
----------	---	------	---

(b) Find the area of triangle ABC.

 $\textit{Answer}: \dots \dots m^2 \, [4]$

24. A line passes through the points A and B whose coordinates are $(5, -13)$ and $(-2, 8)$ respectively.				
(a) Find the equation of the line AB .				
Answer:				
(b) A point P lies on the y-axis, such that it is the same distance from A as it is from B .				
Find the coordinates of point P.				
Answer: P = () [3]				
End of Paper				

1	(a)		e as a single fraction i	in its simplest form	
	``		$\frac{9a^3}{b} \div \frac{81a}{b^7},$		
		(ii)	$\frac{5}{(y-3)^2} - \frac{7}{3-y}$.	Answer	[1]

(b) Simplify
$$\frac{8x^2-18}{2x^2-x-6}$$
.

Answer[3]

	(c)	Solve the equation $\frac{32}{x-5} = 3x-5$.	
2	(a)	Answer $x = \dots$ or	[3]

Answer[2]

(b)	Siti invested some money in a saving accounts for 4 years.
` ′	The rate of interest was fixed at 1.08% per annum compounded annually.
	At the end of 4 years, there was \$8351.24 in her account.

How much did Siti invest in the account? Give your answer correct to the nearest cent.

Answer	\$	[2]
--------	----	-----

(c) The exchange rate between Singapore dollars (\$) and Euros (ϵ) is \$1= ϵ 0.63.

Andy is shopping online for a pair of boots. He finds these prices online for the same model of boots.

Website	Price
Zalora	\$195 (before 7% GST)
Footshopping	€130 Nett

(i) Both websites offer free shipping to Singapore.
 GST needs to be paid if he buys from Zalora.
 It is also known that Andy's credit card charges a foreign currency transaction fee of 3.25%.

Which website offers a better deal? Show your working clearly.

(ii)	Answer	[3]
	Find that value.	[2]
	Answer	[4]

3	Gardens by the Bay Flower Dome operates for 340 days a year.
	The matrix, M, shows the number of different types of tickets (in thousands) sold
	per day in 2019.

Child Adult Senior $\mathbf{M} = \begin{pmatrix} 1.2 & 2 & 5 \\ 2.1 & 4.5 & 0 \end{pmatrix}$ Residents
Non-residents

(a) Evaluate the matrix P = 340M.

		r 1	•	-
Answer	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	1 3	L	•

(b) The tickets cost \$10, \$16 and \$14 for child, adult and senior respectively.

Represent these amounts in a 3×1 matrix N.

Answer
$$N = [1]$$

(c) Evaluate the matrix T = PN.

Answer
$$T = [2]$$

(d)	State what each of the elements of T represents.	
	Answer	
		[1]
(e)	Calculate the total amount of ticket sales in 2019.	
	Give your answer correct to the nearest million.	
	Answer \$ million	[1]
(f)	In 2020, the number of tickets sold for residents increased by 60% across the different types of tickets.	
	In the same year, the number of tickets sold for non-residents dropped to 20% across the different types of tickets.	
	Calculate the percentage change in the amount of ticket sales from 2019 to 2020.	
	State whether this change is an increase or a decrease.	
	Answer%	
	increase / decrease (circle the appropriate answer)	[3]

(a)		first three terms in a sequence of numbers, T_1 , T_2	T_2 , T_3 , are given	
	below	$T_1 = 1^2 + 1 = 2$		
		$T_1 = 1 + 1 = 2$ $T_2 = 2^2 + 3 = 7$		
		$T_3 = 3^2 + 5 = 14$		
	(i)	Find T_4 .		
	•			
		•		
		Annua		[17
		Answer	,	[1]
	(ii)	Find an expression, in terms of n , for T_n .		
		,		F03
				[2]
(b)		first four terms in a different sequence are -55, -		
	(i)	Find an expression, in terms of n , for the sequence.	n th term, P_n , of this	
		sequence.		
		Anguior		[2]
		11180 1701		L ²² .

(ii)	Explain why 222 is not a term of this sequence.	
	Answer	
	••••••	
		[1]
(iii)	Find the least value of n for which $P_n > 1$.	
	Answer	[2]

The variables x and y are connected by the equation $y = \frac{x^3}{5} - \frac{3x}{2} + 1$. Some corresponding values of x and y are given in the table below.

x	-4	-3	-2	-1	0	1	2	3	4
у	р	0.1	2.4	2.3	1	-0.3	-0.4	1.9	7.8

				_
(a)	Find	the	value	of p

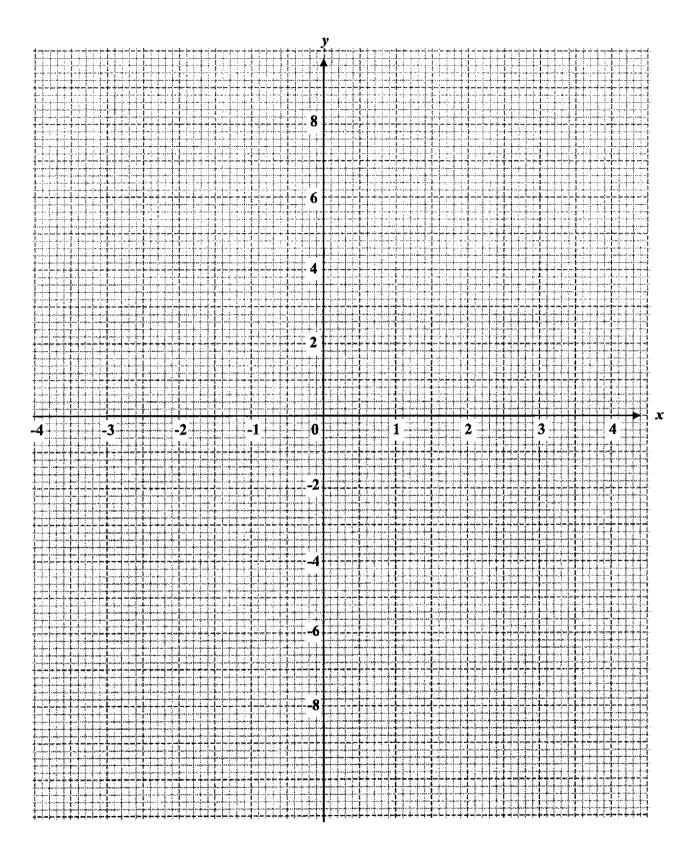
Answer	p	=	 ľ	ĺ	1
23770770	•		 L .		ų

(b) Draw the graph of
$$y = \frac{x^3}{5} - \frac{3x}{2} + 1$$
 for $-4 \le x \le 4$ in the given grid. [3]

(c) (i) On the same grid, draw the graph of
$$2y-3x=2$$
 for $-4 \le x \le 4$. [2]

(ii) Show that the points of intersection of the line and the curve give the solutions of the equation $x^3 - 15x = 0$.

Answer

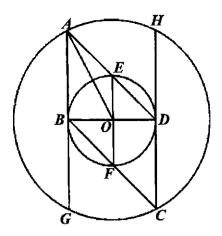

[2]

(iii) Hence, solve the equation
$$x^3 - 15x = 0$$
.

Answer
$$x =$$
 or [2]

(d) By drawing a tangent, find the gradient of the curve at (3, 1.9).

Answer[2]


6

Jace	lyn and Patrine went for a 21 km hike.	
(a)	Jacelyn walked at a constant speed of x kilometres per hour. Write down an expression, in terms of x , for the number of hours she took.	
(b)	Answer	[1]
	speed. Write down an expression, in terms of x , for the number of hours she took.	
	<i>Answer</i> h	[1]
(c)	The difference between their times was 15 minutes. Write down an equation in x to represent this information, and show that it	

reduces to $3x^2 + x - 84 = 0$.

	Solve the equation $3x^2 + x - 84 = 0$, giving the answers correct to three decimal places.	
	Answer $x = \dots$ or \dots	[4]
(e)	Calculate the time that Jacelyn took to complete the hike, giving your answer in hours, minutes and seconds.	
(e)		

7

The centers of the two circles are at O.

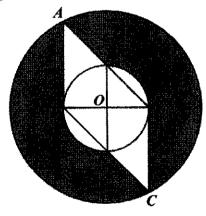
BD is a diameter of the smaller circle.

AB and CD are tangents to the smaller circle.

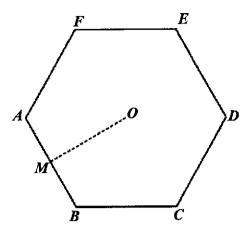
(a) Show that triangle ABD is congruent to triangle CDB. Give a reason for each statement you make.

Answer

[3]


- (b) Suppose the diameter of the smaller circle is 8 cm, angle $BAD = 45^{\circ}$ and BD is perpendicular to EF.
 - (i) Calculate the length of OA.

í	(ii)	Calculate	the	area	οf	triano	le	ARD
Į	ш	Calculate	uic	aica	ΟŢ	urang.	IC.	NDD


Answer cm^2 [1	1]
------------------	----

(iii) Calculate the area of sector *OBE*, giving your answer in terms of π .

(iv) Calculate the shaded area.

8

A regular hexagon, ABCDEF, has sides of 5 cm.

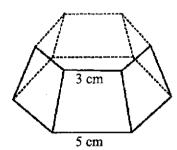
M is the midpoint of AB and O is the centre of the hexagon.

(a) Show that the area of the hexagon ABCDEF is 64.95 cm², correct to 4 significant figures.

Answer

Hexagon ABCDEF forms the base of a pyramid.

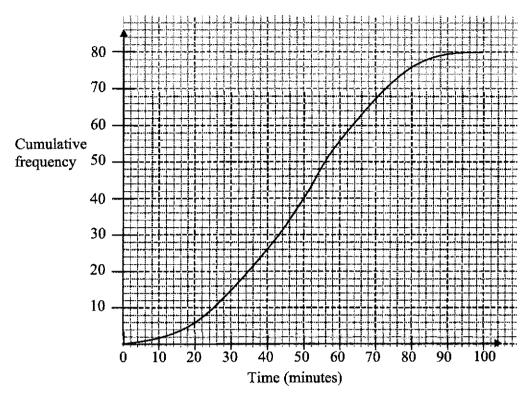
The vertex, X, is directly above O.


The height, OX, of the pyramid is 12 cm.

(b) Calculate the volume of the pyramid.

Answer	cm ³	[2]
--------	-----------------	-----

(c) The top part of the pyramid is cut off leaving the bottom portion as shown.The smaller hexagon has sides of 3 cm.Find the volume of the remaining bottom portion.



Answer	cm ³	[2]

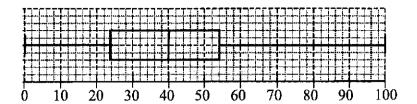
(a)	Calculate the slant neight, MX, of the pyramid.	
	Answercm	[2]
(e)	Calculate the total surface area of the pyramid.	

9 The amount of time 80 secondary school students spent on social media in a day are recorded.

The cumulative frequency curve below shows the distribution of their times.

- (a) Use the curve to estimate
 - (i) the median,

4	•	F 4 1
Answer	 $\mathbf{m}\mathbf{m}$	I

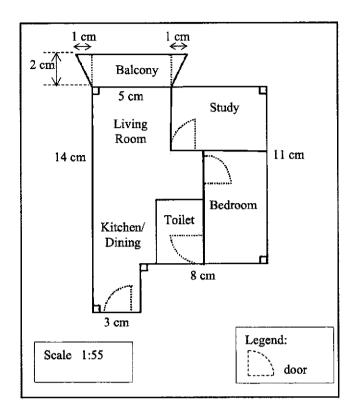

(ii) the interquartile range of the times.

Answer min [2]

(b)	Estimate the percentage of secondary students who spent more than 70 min on social media per day.						
				Answer		%	[2]
(c)	Complete the	e grouped fre	quency table f	for the time sp	ent on social r	nedia.	
	Time (min)	$0 \le x < 20$	20 ≤ x < 40	40 ≤ <i>x</i> < 60	$60 \le x < 80$	$80 \le x < 1$	00
	Frequency	6	20				[1]
(d)			he mean time		l media.	min	[1]
(f)	- •			Answer		min	[1]
					••••	•••••	[1]

(g) The amount of time 80 primary school students spent on social media in a day are also recorded.

The box-and-whisker plot shows the distribution of the times (in minutes).

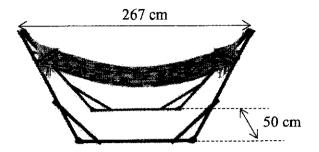


Make two comments comparing the amount of time primary school students and secondary school students spent on social media.

Answer	 	• • • • • • • • • • •	 				
	 		 •	• • • • • • • • • • • • • • • • • • • •			
	 		 			,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	
	 	• • • • • • • • •	 		· • • • • • • • • • • • • • • • • • • •		[2]

10 Xavier and his wife are planning to buy an apartment.

The brochure below shows the layout of the apartment they are interested in.



(a) Find the ratio of area of the floor plan to the actual area of the apartment in 1:n.

Answer 1:.....[1]

(b) Xavier wanted to buy the following hammock to be placed at the trapezium-shaped balcony.

He wanted a walking space of at least 30 cm to be all around when the hammock is placed at the balcony.

Show, with appropriate working, if he should buy this hammock.

Answer

He should / should not buy the hammock. (circle the appropriate answer)

(c) Xavier and his wife wanted to change the flooring for the whole apartment. They wanted the whole apartment to have the same flooring.

The cost of different types of flooring materials and the cost of installation are found in the tables below.

Cost of different types of flooring materials

Type of flooring	Cost per square foot
Vinyl flooring	\$4 - \$7
Porcelain tiles	\$3 - \$5

https://www.homerenoguru.sg/articles/renovation-essentials/flooring-singapore/

Cost of flooring installation by material

Type of flooring	Cost per square foot
Vinyl flooring	\$4 - \$8
Porcelain tiles	\$7 - \$11

https://www.homeadvisor.com/cost/flooring/install-flooring/

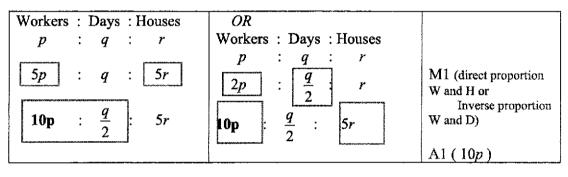
Which type of flooring should they go for if they have limited budget? Suggest a suitable budget Xavier and his wife should set aside for changing the flooring.

Show your working clearly stating your assumption(s).

 $1 \text{ m}^2 = 10.7639 \text{ ft}^2$

End of Paper	
	•
Assumption(s)	
Budget \$	[∨J
Type of Flooring	[6]

1. Factorise fully $2x^2 + y^2 - 2x - xy^2$.

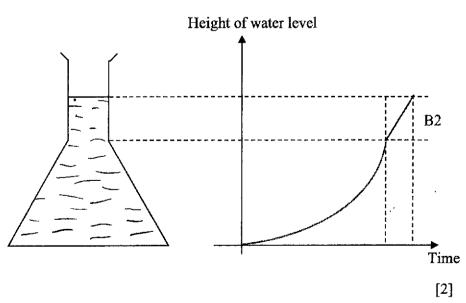

$2x^2 + y^2 - 2x - xy^2$	
$= 2x(x-1) + y^2(1-x)$	M1 (first level factorization)
$= 2x(x-1)-y^2(x-1)$	ATT (And 10.01 Individuality)
$=(2x-y^2)(x-1)$	A1

Answer:
$$(2x-y^2)(x-1)$$
 [2]

2. It takes p workers q days to build r houses.

If the number of days is halved and 5r houses are to be built, how many workers must be hired for the job?

Express your answer in terms of p.



Answer: 10p [2]

3. Water is poured at a constant rate into the conical flask as shown below.

Draw on the axes provided, the change in the water level of the conical flask over time.

Answer

_---

4. Solve the equation $(1-x)^2 = \frac{9}{4}$.

$$(1-x)^{2} = \frac{9}{4}$$

$$1-x = \pm \sqrt{\frac{9}{4}}$$

$$1-x = \frac{3}{2} \quad \text{or} \quad 1-x = -\frac{3}{2}$$

$$x = 1-\frac{3}{2} \quad x = 1+\frac{3}{2}$$

$$x = -\frac{1}{2} \quad x = 2\frac{1}{2}$$
All

Answer: $x = -\frac{1}{2}$, $x = 2\frac{1}{2}$ [2]

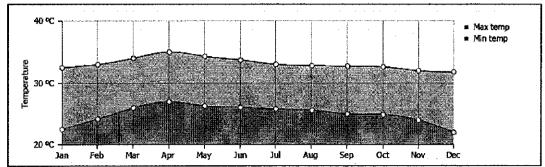
5. A group of 15 students recorded their timings (to the nearest minute), for a 5-km run. The results are represented in the stem and leaf diagram below.

Stem	Lea	af								
2	6	8	8							
3	0	0	1	3	4	4	4	5	7	9
4										
5										
6	1									

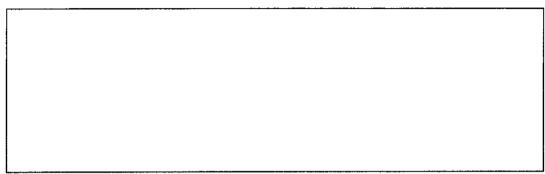
Key: 2|6 means 26 minutes

(a) Find the percentage of students who took at least 35 minutes to complete the run.

$\frac{4}{15} \times 100 = 26\frac{2}{3}\%$ (acc	cept 26.7%)
--	-------------


(b) Explain why the mean may not be an appropriate measure of average time taken by these students to complete the 5 km run.

There is an outlier / extreme value of 61. B1


Answer:

Accept: Range is too wide because of 61/ anomaly
Any equivalent description of outlier

6. The line graphs below show the monthly average minimum and maximum temperatures of Bangkok (Thailand) and Singapore, for the year 2020.

Average min and max temperature, Bangkok Thailand Copyright 2020 www.weather-and-climate.com

Average min and max temperature, Singapore Copyright 2020 www.weather-and-climate.com

(a) Huda claims that Singapore experienced wider differences between the maximum and minimum temperatures.

Explain why the data presented above may have been misleading for Huda.

The gap between lowest(min) and highest (max) temperatures appear	
greater for Singapore. This is due to the different scale used for the vertical axis.	В
The range on y-axis for Bangkok is 20-40 whereas for spore is 22-32 hence difficult to compare.	
) Give a suggestion on how the data above can be presented in a clearer way.	

(b

Answer:.	.1.	Use the same scale for vertical axis	or		
	2.	Draw both on the sames grid/same grap	h/same axes	B1	[1]
************	3.	use Comparative Bar Graph/ Comparati			L . 3

Accept any equivalent to SCALE (unit per degree etc)

Do not accept if thid not start from zero' without mentioning scale

7. A polygon with n sides has two exterior angles 100° and 50° . The remaining (n-2) exterior angles are 14° each.

Find n.

100 + 50 + 14(n-2) = 360	M1 (application sum of ext angles)
14(n-2) = 210	
n-2=15	Ad
n = 17	A1

Answer: n = ... 17 [2]

- 8. Written as the product of its prime factors, $504 = 2^x \times 3^y \times 7$.
 - (a) Find the values of x and y.

Answer:
$$x = 3, y = 2 [1]$$

(b) The highest common factor and the lowest common multiple of 18 and z are 6 and 504 respectively. Find the smallest possible value of z.

HCF = 6 =
$$2 \times 3$$

LCM = $504 = 2^3 \times 3^2 \times 7$

$$18 = 2 \times 3^2$$

$$z = 2^3 \times 3 \times 7 = 168$$
M1 (prime factorization of 18)
A1

Answer: smallest z = 168 [2]

9. Simplify
$$\left(\frac{x^6}{64}\right)^{-\frac{2}{3}} \div \frac{y^3}{x^6}$$
. Leave your answer in positive index.

9. Simplify
$$\left(\frac{x^6}{64}\right)^{-\frac{2}{3}} \div \frac{y^3}{x^6}$$
. Leave your answer in positive index.
$$\left(\frac{x^6}{64}\right)^{-\frac{2}{3}} \div \frac{y^3}{x^6} = \left(\frac{64}{x^6}\right)^{\frac{2}{3}} \div \frac{y^3}{x^6}$$

$$= \frac{16}{x^4} \times \frac{x^6}{y^3}$$

$$= \frac{16x^6}{x^4y^3}$$

$$= \frac{16x^2}{y^3}$$
A1 (16/y³)
A1 (x²)
[allow A1 if only 16* is not seen]

10. Mr Png bought a massage chair with a down payment of 15% of the cash price and a monthly instalment of \$195.60 for 18 months.

If he paid a total of \$3970.80, find the cash price of the massage chair.

Total monthly installment = \$195.60 × 18 = \$3520.80	M1 (mthly x 18)
Downpayment = $$3970.8 - 3520.80 = 450	
$\therefore \text{ Cash price} = \frac{450}{15} \times 100$ $= 3000	M1 (√ 'their' downpayment /15 x 100) A1

Answer: \$... 3000 ... [3]

11. Given that $m = \sqrt{\frac{2m+1+k}{4k}}$, express k in terms m, in its simplest form.

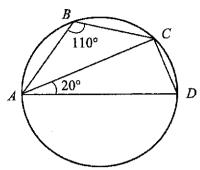
$$m = \sqrt{\frac{2m+1+k}{4k}}$$

$$m^{2} = \frac{2m+1+k}{4k}$$

$$4km^{2} = 2m+1+k$$

$$4km^{2} - k = 2m+1$$

$$k(4m^{2}-1) = 2m+1$$


$$k = \frac{2m+1}{4m^{2}-1}$$

$$k = \frac{2m+1}{(2m+1)(2m-1)}$$

$$k = \frac{1}{2m-1}$$
A1

[3] Answer:

Explain why AD is a diameter of the circle.

Answer:

$$\angle ADC = 180^{\circ} - 110^{\circ}$$
 (angles in opp. segment)
= 70°

$$\angle ACD = 180^{\circ} - 70^{\circ} - 20^{\circ}$$
 (angle sum of Δ)
= 90°

M1 (accept if no reason provided above have)

Since $\angle ACD = 90^{\circ}$, using right-angle in a semicircle property, AD is a diameter of the circle.

A1

[3]

- 13. n is a positive integer.
 - (a) Show that $(3n-2)^2 n^2$ is a multiple of 4.

$$(3n-2)^{2} - n^{2} = 9n^{2} - 12n + 4 - n^{2}$$
$$= 8n^{2} - 12n + 4$$
$$= 4(2n^{2} - 3n + 1)$$

M1 (expansion)

A1 (accept if student able to explain that 4 is a factor of each term)

Give B1 if $8n^2 - 12n + 4$ is evident in (b) but not in (a)

[2]

(b) Hence or otherwise, factorise $(3n-2)^2 - n^2$ fully.

$$(3n-2)^2 - n^2 = 4(2n^2 - 3n + 1)$$

$$= 4(2n-1)(n-1)$$
B1

Answer: 4(2n-1)(n-1) [1]

- 14. A bean bag is filled with small polystyrene balls of radius 3 millimetres.
 - (a) Write the radius of the ball in metres, leaving your answer in standard form.

$3 \text{ mm} = 3 \div 1000 \text{ m}$ = $3 \times 10^{-3} \text{ m}$	B1 (do not accept 3.0)
	<u> </u>

(b) A bean bag of volume 2.88 m³ is to be 80% filled with the spherical polystyrene balls.

Find the number of polystyrene balls required, giving your answer to the nearest

Find the number of polystyrene balls required, giving your answer to the nearest million.

$$\frac{80}{100} \times 2.88 = 2.304 \text{ m}^3$$
No. of polystyrene balls (vol. sphere)
$$= \frac{2.304}{\frac{4}{3}\pi (3 \times 10^{-3})^3} \text{ m}$$

$$= 20371832.72$$

$$= 20 \text{ million}$$
M1

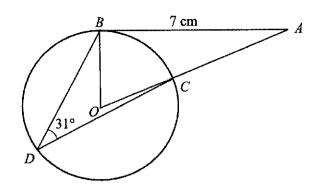
M1

M1

M1

A1

Answer ... 20... million [3]


15. The scores for a Mathematics Test sat by six students are as follows:

The range of the scores is 48.

The median score is 62.

The mean score is 61.

Find the values of a, b and of c.

In the diagram, B, C and D are points on a circle.

O is the centre, OCA is a straight line and BA is tangent to the circle at B. Angle $BDC = 31^{\circ}$ and AB = 7 cm.

Accept any full explanation describing Tangent and radius, hence 90°

(a) State the reason why angle $OBA = 90^{\circ}$.

Reason: B1 (write in full)

(b) Find the length of the radius of the circle.

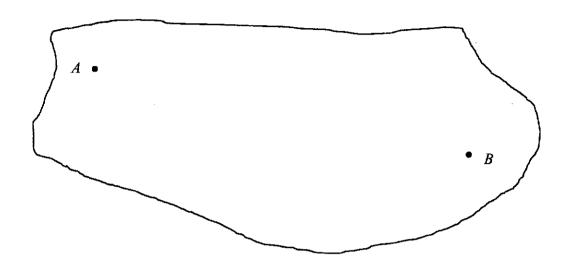
$$\angle BOC = 31^{\circ} \times 2 \text{ (angle at centre = 2 angle circumference)}$$

$$= 62^{\circ}$$

$$\tan 62^{\circ} = \frac{7}{OB}$$

$$OB = \frac{7}{\tan 62^{\circ}}$$

$$OB = 3.72 \text{ cm}$$
M1


M1 (correct trig ratio)

A1

Answer: 3.72 cm [3]

17. (Diagram is drawn to scale)

The scale of the map below is 1:50 000.

Asher cycles from Point A to Point B at an average speed of 13 km/h.

If Asher has to reach point B by 4.30 pm, suggest the latest time he should set off from point A.

Show your working clearly.

1 cm : 50 000 cm 1 cm : 0.5 km

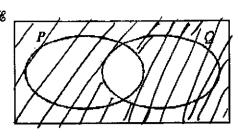
10.6 cm (measured) \rightarrow 0.5 × 10.6 = 5.3 km

Time = $\frac{5.3}{13}$ h = 0.407 h = 24 min 27 sec

He should leave house at by 4.05pm latest.

M1 (using scale with or w/o conversion)

(0.5 x 10.6 or 10.6 x 50000)


M1 (dist in km over speed)

MI [Correct conversion to min]

A1

Answer: He should leave point A latest by ... 4.05 ... pm [4]

18. (a) On the Venn diagram, shade the region which represents $P' \cup Q'$.

B1 [1]

(b) $\varepsilon = \{x : x \text{ is an integer such that } 5 \le x \le 9 \}$

$$A = \{ x : 5 - \frac{x}{2} \ge 1 \}$$

$$B = \{ x : 4x - 1 > 19 \}$$

List the element(s) contained in the set $(A \cap B)'$.

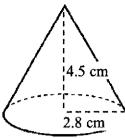
$$5 - \frac{x}{2} \ge 1 \qquad 4x - 1 > 19$$

$$5 - 1 \ge \frac{x}{2} \qquad 4x > 20$$

$$4 \ge \frac{x}{2} \qquad x > 5 \quad --- \quad M1 \text{ (or B = [6, 7, 8, 9] B1)}$$

$$8 \ge x$$

$$x \le 8 \quad ---- \quad M1 \text{ (or A = [5, 6, 7, 8] --- B1)}$$


$$(A \cap B) = \{6, 7, 8\}$$

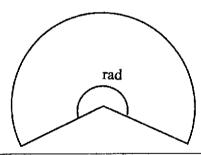
$$(A \cap B)' = \{5, 9\}$$
A1 (ecf that is appropriate)

Answer: $(A \cap B)' = \{ 5, 9 \}$ [3]

www.geniebook.com

19. The diagram shows a paper cup in a shape of a cone with radius 2.8 cm and vertical height 4.5 cm.

(a) Show that the curved surface area is $14.84 \text{ } \pi \text{ cm}^2$.


Answer:

To find slant height (using Pythagoras' Theorem) $l^{2} = 2.8^{2} + 4.5^{2}$ $l = 5.3$	M1/ B1	
Curved Surface Area = πrl = $\pi \times 2.8 \times 5.3$ = $14.84 \pi \text{cm}^2$. (shown)	B1	

[2]

(b) The paper cup is cut open to form a sector of a circle with angle θ radians.

Find angle θ .

Area Sector = Area Curved Surface Cone

$$\frac{1}{2}r^2\theta = 14.84\pi$$

$$\frac{1}{2}(5.3)^2\theta = 14.84\pi$$

$$\theta = \frac{14.84\pi}{\frac{1}{2}(5.3)^2}$$

$$\theta = 3.32 \text{ rad}$$

M1 (form equation connecting area sector and cone S.A)

Accept equation connecting are length + 2r = conebase circumference.

A1

Answer:
$$\theta = 3.32 rad [2]$$

20. In the diagram, the line AD is parallel to BC and $\angle BAD$ is equal to $\angle CDB$. $\angle ABD = 81^{\circ}$, BC = 6 cm and BD = 10 cm.

(a) Explain why $\triangle ABD$ is similar to $\triangle DCB$.

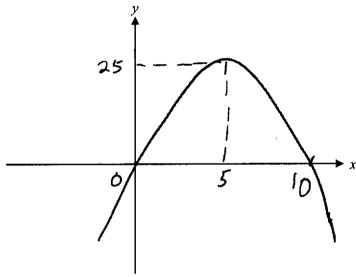
Answer	$\angle ADB = \angle CBD$ (alt angles)	B1(both correct)	
11.63,70.	$\angle BAD = \angle CDB$ (given)		
***************************************	∴∆ABD is similar to ADCB	(AA Similarity Test) B	1
***************************************			[2]

(b) Find the length of AD.

$$\frac{AD}{10} = \frac{10}{6}$$

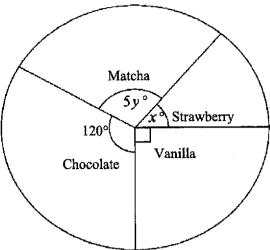
$$6 AD = 100$$

$$AD = 16\frac{2}{3} \text{ cm}$$
M1 (correct ratio)


A1 (accept 16.7)

- 21. The equation of a curve is given by y = x(10-x).
 - (a) Explain why the maximum value of y is 25.

Answer	The x-intercepts are 0	and 10.	[B1]	
	The line of symmetry is			
	mum occur at line of symme		******	
When	1x = 5, y = 5 (10 - 5) = 25	[B1 (su	b x=5)]	
.,				[3]


(b) Sketch the curve y = x(10-x), showing clearly the intercepts and the maximum point.

B1 open downwards, cutting at 0 and 10 B1 max point (5,25)

[2]

22. The pie chart represented the number of people who chose their favourite milkshake flavour.

(a) Form an equation in terms of x and y.

5y + x + 120 + 90 = 360	
5y + x = 150	B1 (accept non-simplified)
	Answer $5y + x = 150$ [1]

(b) The ratio of people who chose Strawberry to Matcha flavour was 4:11. Show that 11x - 20y = 0.

$$\frac{x}{5y} = \frac{4}{11}$$

$$11x = 20y$$

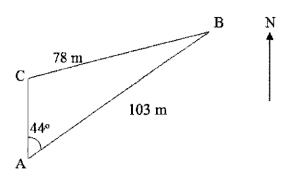
$$11x - 20y = 0$$
B1 (starting with ratio form)

(c) Using your equations from (a) and (b), solve them simultaneously to find the values of x and of y.

$$5y+x=150$$

$$x=150-5y -------- [1]$$

$$11x-20y=0 ------- [2]$$
Sub [1] into [2]
$$11(150-5y)-20y=0$$


$$1650-55y-20y=0$$

$$1650-75y=0$$

$$75y=1650$$

$$y=22$$
And $x=150-5(22)=40$
All

23.

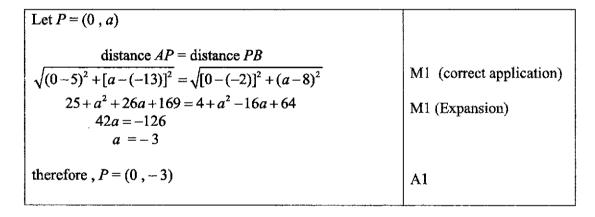
A, B and C are 3 points on level ground. BC = 78 m, AB = 103 m and angle $BAC = 44^{\circ}$. C is due north of A.

(a) Calculate the bearing of A from B.

$180^{\circ} + 44^{\circ} = 224^{\circ}$ B1		
	1 1000 : 440 2240	

Answer:.....224......°[1]

(b) Find the area of triangle ABC.


To find ∠ACB, using sine rule"	
$\frac{\sin(A\hat{C}B)}{\sin(A^2)} = \frac{\sin(A^2)}{\sin(A^2)}$	M1 (correct application of sine rule)
103000	1.22 (Control of particular of the control of the c
$A\hat{C}B = 66.5352^{\circ}$	
Taking Obtuse angle = $180^{\circ} - 66.5352^{\circ}$	
= 113.5°	A1
$\angle CBA = 180^{\circ} - 113.5^{\circ} - 44^{\circ}$	
= 22.535°	
Area of $\Delta = \frac{1}{2} \times 78 \times 103 \times \sin 22.535^{\circ}$	M1 (using 'their' angle CBA)
= 1539.5228	A 1
$= 1540 \text{ m}^2$	A1

- **24.** A line passes through the points A and B whose coordinates are (5, -13) and (-2, 8) respectively.
 - (a) Find the equation of the line AB.

Gradient = $\frac{8 - (-13)}{-2 - 5} = -3$	M1 (gradient)
y = -3x + C Using (-2, 8), 8 = -3(-2) + C 8 = 6 + C C = 2	
Equation: $y = -3x + 2$	A1

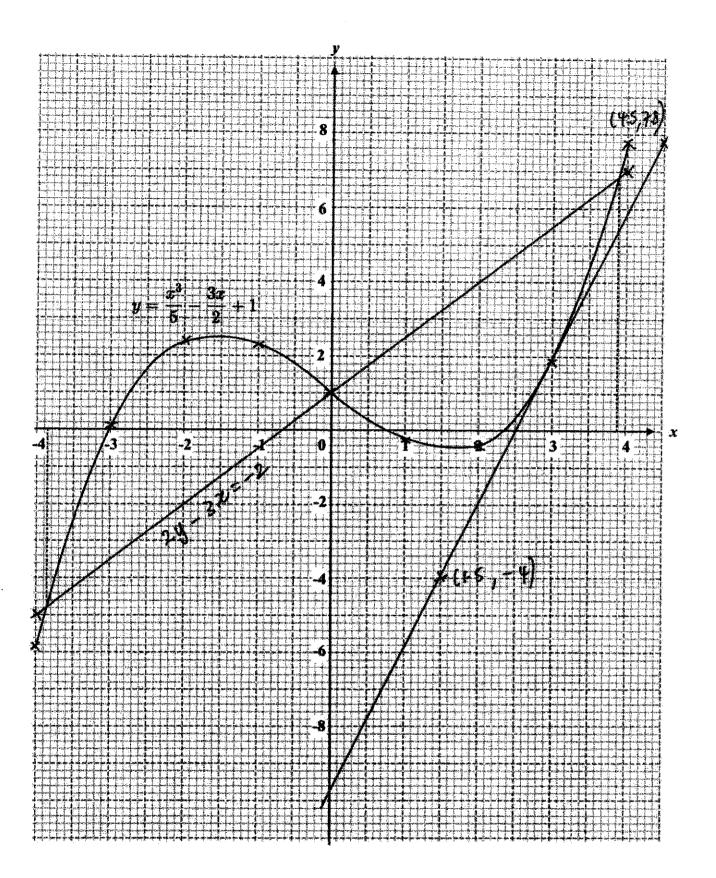
Answer:
$$y = -3x + 2$$
 [2]

(b) A point P lies on the y-axis, such that it is the same distance from A as it is from B.
Find the coordinates of point P.

Answer: P = (0, -3)[3]

End of Paper

1	(a)	Write	e as a single fraction in its simplest form	
			$\frac{9a^3}{b} \div \frac{81a}{b^7},$	
			$\frac{a^2b^6}{9}$ [B1]	
	<u> </u>	(ii)	$\frac{5}{(y-3)^2} - \frac{7}{3-y}$	
			$\frac{5}{(y-3)^2} + \frac{7}{y-3}$ [M1 – changing denominator to y – 3]	
			$=\frac{5+7(y-3)}{(y-3)^2}$	
			$= \frac{7y - 16}{(y - 3)^2} [A1]$	
	(b)	Simp	lify $\frac{8x^2-18}{2x^2-x-6}$.	
		$\frac{2(4)}{(2x+1)}$	$\frac{4x^2-9)}{+3)(x-2)}$ [M1 for factorising denominator]	
		$=\frac{2(2)}{(2)}$	(2x+3)(2x-3) [M1 for factorising numerator - at least twice]	
		$=\frac{2(2)}{(2)}$	$\frac{2x-3}{x-2}$ or $=\frac{4x-6}{(x-2)}$ [A1]	
	(c)	Solve	e the equation $\frac{32}{x-5} = 3x-5$.	
			$3x^2-20x+25$ [M1 for multiplying $x-5$ on both sides and expanding RHS] +1)(x-7) = 0 [M1 for all terms on one side and factorising/quadratic	
		form $x = -$	ula]	
			3	
		:		


2	(a)	decreased by 85.9%. In 2020, the total number wa	I number of international visitors in Singapore as 2.7×10 ⁶ . The serial visitors in 2019, giving your answer								
		$\frac{2.7 \times 10^6}{14.1} \times 100 [M1 \text{ for finding 1\%}]$									
		$=1.91\times10^{7}$ [A1]									
	(b)	The rate of interest was fixed at 1.08% per annum compounded annually. At the end of 4 years, there was \$8351.24 in her account. How much did Siti invest in the account?									
		Give your answer correct to the nearest cent. $8351.24 = P(1 + \frac{1.08}{100})^4 [M1]$ $P = \$8000.00 [A1 - to nearest cent]$									
			Singapore dollars (\$) and euros is \$1 = €0.63.								
ļ		for the same model of boots. Price									
6		\$195 (before 7% GST) €130 Nett									
		GST needs to be paid It is also known that transaction fee of 3.2: Which website offers	a better deal?								
ļ——		Show your working clearly. Zalora 1.07×195 = \$208.65 [M1 for calculating cost including GST]									
		Footshopping €130×1.0325 = €134 [M1 for calculating of to \$]	2.225 = \$213.06 cost inclusive of transaction fee and converting								
1	1	[accept if students convert Zalora to euros instead]									
		[accept if students con	nvert Zalora to euros instead]								

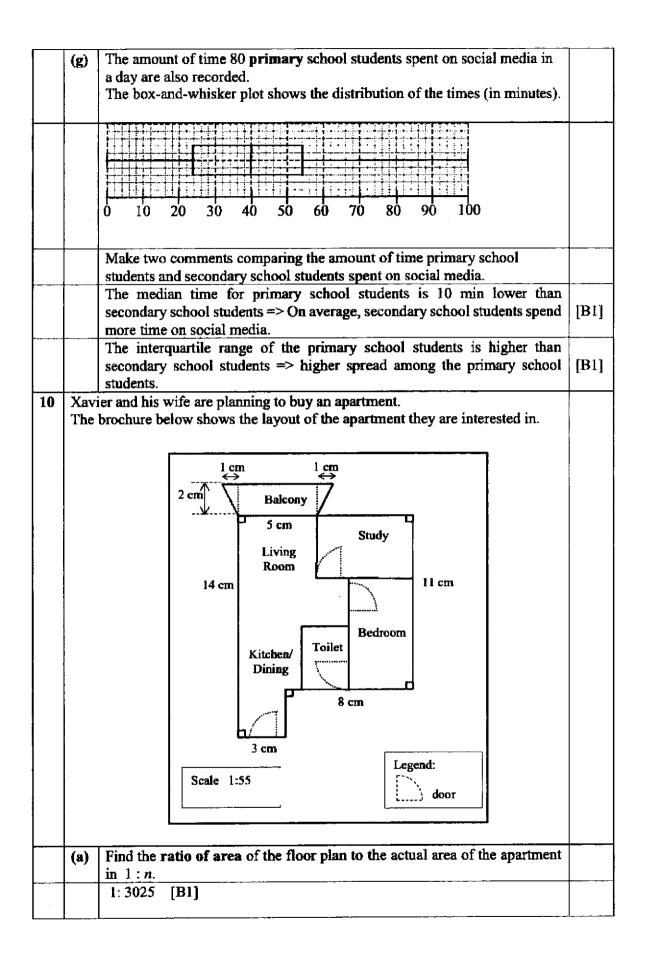
		(ii) A certain debit card offers x% foreign currency transaction fee. x must be less than a certain value so that buying from Footshopping will be a better deal.
		Find that value.
		€130 = \$206.35 [M1 for converting €130 to \$]
		$\frac{$208.65 - $206.35}{206.35} \times 100\% = 1.11\% [A1 \text{ for } 1.11 \text{ without } \%$ accept 1.12]
	+	accpt 1.12
3	The	dens by the Bay Flower Dome operates for 340 days a year. matrix, M, shows the number of different types of tickets (in thousands) sold day in 2019.
		Child Adult Senior
		$\mathbf{M} = \begin{pmatrix} 1.2 & 2 & 5 \\ 2.1 & 4.5 & 9 \end{pmatrix}$ Residents Non-residents
	(a)	Evaluate the matrix P = 340M.
		$\mathbf{P} = \begin{pmatrix} 408 & 680 & 1700 \\ 714 & 1530 & 3060 \end{pmatrix} [\mathbf{B}1]$
	(b)	The tickets cost \$10, \$16 and \$14 for child, adult and senior respectively.
		Represent these amounts in a 3×1 matrix N.
		$\mathbf{N} = \begin{pmatrix} 10 \\ 16 \\ 14 \end{pmatrix} [\mathbf{B}1]$
	(c)	Evaluate the matrix $T = PN$.
		$\mathbf{T} = \begin{pmatrix} 38760 \\ 74460 \end{pmatrix} [B2]$
	-	or [M1 for either 38760 or 74460. Allow ecf]
	(d)	State what each of the elements of T represents.
		Total amount of money in thousands collected from ticket sales from residents and non-residents respectively. [B1]

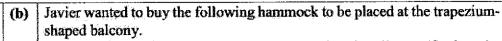
	(e)	Calcu	late the total amount of ticket sales in 2019.	
	` `	Give y	your answer correct to the nearest million.	:
		11322	20×10 ³	
		= 113.	.22×10 ⁶	
		113 [F	31)	
			-	
	(f)	In 202	20, the number of tickets sold for residents increased by 60% across	
			fferent types of tickets.	
		In the	same year, the number of tickets sold for non-residents dropped to	
		20% a	across the different types of tickets.	
		Calcu	late the percentage change in the amount of ticket sales from	
			to 2020.	•
			whether this change is an increase or a decrease.	
			ant taken in tickets sales for 2020	
		38760	0×1.6+74460×0.2	
		= 769	$\begin{bmatrix} 008 & [M1] \text{ accept other methods e.g.} \\ 008 & 1088 & 2720 \\ 142.8 & 306 & 612 \end{bmatrix} \begin{bmatrix} 10 \\ 16 \\ 14 \end{bmatrix}$	
		_		
1		Perce	ntage change	
		1132	20-76908 13220 ×100%	
			13220	ļ
		= 32.	1% [A1]	
		decre	ase [A1]	
4	(a)	(T) C	for the Total Transfer	
*	(a)		irst three terms in a sequence of numbers, T_1 , T_2 , T_3 , are given	
	ŀ	below		l
			$T_1 = 1^2 + 1 = 2$	
			$T_2 = 2^2 + 3 = 7$	
			$T_3 = 3^2 + 5 = 14$	
				ļ
		(i)	Find T_4 .	
<u></u>			$T_4 = 23 \text{ [B1]}$	
		(ii)	Find an expression, in terms of n , for T_n .	
—	+		$T_n = n^2 + 2n - 1$	
			[B1 for n^2 ; B1 for $2n-1$]	
			[M1 for correct expression without simplification]	

(b)	The f	first four terms in a different sequence are -55, -51, -47, -43.
	(i)	Find an expression, in terms of n , for the n th term, P_n , of this sequence.
		$P_n = 4n - 59$
		[B1 for 4n; B1 for -59]
	(31)	Timbin who 222 is not a torus of this assurance
	(ii)	Explain why 222 is not a term of this sequence.
		222 = 4n - 59
		n = 70.25
	<u> </u>	Since n is not an integer, 222 is not a term of this sequence. [B1]
	(iii)	Find the least value of n for which $P_n > 1$.
		4n-59>1
		n > 15 [M1]
		Least value of n is 16. [A1] or [B2]

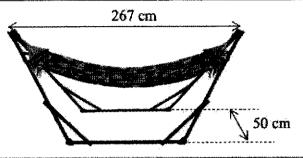
5	The variables x and y are connected by the equation $y = \frac{x^3}{5} - \frac{3x}{2} + 1$. Some corresponding values of x and y are given in the table below.												
		x	-4	-3	-2	-1	0	1	2	3	4		Ì
		у	p	0.1	2.4	2.3	1	-0.3	-0.4	1.9	7.8		.,-
	(2)	Find the value of n											
	(a)	Find the value of p . $p = -5.8 [B1]$											
	(b)		the graphs – [B2								grid.		[3]
	Points – [B2 for all points correctly plotted; B1 for 1 mistake] Curve – [B1 for smooth curve]												
···	(c)	(i)	On the	same	grid, dr	aw the	graph (of 2y-	3x = 2	for -4	≤ <i>x</i> ≤	4.	[2]
		(i) On the same grid, draw the graph of $2y-3x=2$ for $-4 \le x \le 4$. Points – [B1 for at least 2 points] Curve – [B1 for line]											
		(ii)	(ii) Show that the points of intersection of the line and the curve give the solutions of the equation $x^3 - 15x = 0$.										
•			$\frac{x^3}{5}$ - 3	x = 0		[M1	or equi	valent e	e.g. sub	stitutio	on]		
			$x^3 - 1$	5x = 0	[A1]				··			<u></u>	Fai
												[2]	
_		(iii)				ation .							
			$x = -3.9 \pm 0.1$ or $x = 0$ or $x = 3.9 \pm 0.1$ [B2]									ŀ	
		[B1 for any one correct answer] Do not accept $x = -3.87$ or $x = 3.87$											
	(d)	By drawing a tangent, find the gradient of the curve at (3, 1.9).									1		
			for tang 3.93±0			1]			-				
													-

JACC	lyn and Patrine went for a 21 km hike.
(a)	Jacelyn walked at a constant speed of x kilometres per hour.
_	Write down an expression, in terms of x , for the number of hours she took.
	$\left \frac{21}{x} \right $ [B1]
(b)	Patrine walked at a constant speed which was $\frac{1}{3}$ km/h more than Jacelyn's
	speed.
-	Write down an expression, in terms of x, for the number of hours she took.
	$\frac{21}{x+\frac{1}{3}}$ [B1] accept $\frac{63}{3x+1}$
-	3
(c)	The difference between their times was 15 minutes.
	Write down an equation in x to represent this information, and show that it
	reduces to $3x^2 + x - 84 = 0$.
	$\frac{21}{x} - \frac{21}{x + \frac{1}{3}} = \frac{15}{60} [M1]$
	$\frac{21(x+\frac{1}{3})-21x}{x(x+\frac{1}{3})} = \frac{1}{4}$ [M1 for putting as common denominator] $3x^2+x-84=0$ [A1]
	$3x^2 + x - 84 = 0 [A1]$
(d)	Calculate and a 2.2 to 94 O sining the appropriate themse
(4)	Solve the equation $3x^2 + x - 84 = 0$, giving the answers correct to three decimal places.
	$x = \frac{-1 \pm \sqrt{1^2 - 4(3)(-84)}}{2(3)} [M1]$
	$x = \frac{-1 \pm \sqrt{1009}}{6}$
	x = 5.127 [A1]
i.	x = -5.461 [A1]

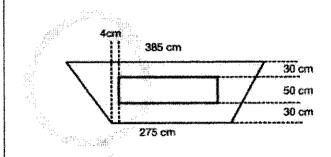

.........

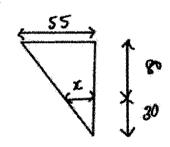

	(e)	Calculate the time that Jacelyn took to complete the hike, giving your answer in hours, minutes and seconds.							
		$Time = \frac{21}{5.127}$ [M1]							
		= 4h 5min 44sec/ 45 sec [A1]							
7	The	centers of the two circles are at O.							
	BD i	is a diameter of the smaller circle. and CD are tangents to the smaller circle.							
	(a) Show that triangle ABD is congruent to triangle CDB. Give a reason for each statement you make.								
		Give a reason for each statement you make.							
		BD = DB (common side)							
		$\angle ABD = \angle CDB$ (tangent \perp radius) Since $BO = OD$ and $\angle ABO = \angle CDO = 90^{\circ}$							
		Since $BO = OD$ and $\angle ABO = \angle CDO = 90^{\circ}$							
		Therefore AC a CHA Equal charde)							
		Therefore $AB = CD$							
		Triangle ABD is congruent to triangle CDB (SAS property)	[B]						
		Suppose the diameter of the smaller circle is 8 cm, angle $BAD = 45^{\circ}$ and							
	(b)								
	(b)	BD is perpendicular to EF.							
	(b)								
	(b)	BD is perpendicular to EF. (i) Calculate the length of OA.							
	(b)	BD is perpendicular to EF. (i) Calculate the length of OA . $OA = \sqrt{8^2 + 4^2} [M1 - accepts other correct method]$ $OA = 8.94 [A1]$							
	(b)	BD is perpendicular to EF. (i) Calculate the length of OA. $OA = \sqrt{8^2 + 4^2} [M1 - accepts other correct method]$							
	(b)	BD is perpendicular to EF. (i) Calculate the length of OA . $OA = \sqrt{8^2 + 4^2} [M1 - accepts other correct method]$ $OA = 8.94 [A1]$ (ii) Calculate the area of triangle ABD.							

	(iv) Calculate the shaded area.				
	Area of $ABE = 32 - 4\pi - \frac{1}{2} \times 4 \times 4$ $= 24 - 4\pi$ [M1] Area of bigger circle $= \pi \sqrt{80}^2$ [M1 for finding area of bigger circle] Shaded area $= \pi \sqrt{80}^2 - \pi \times 4^2 - 2(24 - 4\pi)$				
	$= 178 \text{ cm}^2 \text{ [A1]}$				
8	$A = \begin{bmatrix} E \\ O \\ B \end{bmatrix}$				
	A regular hexagon, ABCDEF, has sides of 5 cm.				
, 4 ,44	M is the midpoint of AB and O is the centre of the hexagon. (a) Show that the area of the hexagon ABCDEF is 64.95 cm ² , correct to 4 significant figures.				
***************************************	Area of triangle $OAB = \frac{1}{2} \times 5 \times 5 \times \sin 60^{\circ}$ [M1 for finding area of 1 \triangle]	aria di Sociologia			
	Area of hexagon = $6 \times \frac{1}{2} \times 5 \times 5 \times \sin 60^{\circ}$ [M1 for multiplying by 6]				
	Area of hexagon = 64.95 cm ² [A1]				


	agon ABCDEF forms the base of a pyramid.	
	vertex, X, is directly above O. height, OX, of the pyramid is 12 cm.	
 (b)	Calculate the volume of the pyramid.	
	$Vol = \frac{1}{3} \times 64.95 \times 12$ [M1]	
	$Vol = 260 \text{ cm}^3$ [A1]	
(c)	The top part of the pyramid is cut off leaving the bottom portion as	
(e)	shown. The smaller hexagon has sides of 3 cm. Find the volume of the remaining bottom portion.	
	3 cm	
	Ratio of vol = 27: 125 [M1 for finding ratio of volume. Accept other method]	
	Remaining units = 125 - 27 = 98	
	125 units – 259.8 cm ³ 98 units – 204 cm ³ [A1]	
(d)	Calculate the slant height, MX, of the pyramid	
	$\tan 30^\circ = \frac{2.5}{OM}$	
	l I	
	$OM = \frac{2.5}{\tan 30^{\circ}}$ [M1 for finding length of OM]	
	MX = 12.8 cm [A1]	

	(e)	Calculate the total surface area of the pyramid.							
		Area of 6 lateral triangles = $6 \times \frac{1}{2} \times 5 \times 12.7573$ [M1]							
		$TSA = 256 \text{ cm}^2 \text{ [A1]}$							
		1571 2500	[222]						
)	The amount of time 80 secondary school students spent on social media in a								
	day are recorded. The cumulative frequency curve below shows the distribution of their times.								
	The cumulative frequency curve below shows the distribution of their times.								
	(a)	Use the curve	e to estimate						
		(i) the me	edian,						
		50 mir	1 [B1]						
		(Six the int	eronortile rat	ige of the time					
		<u> </u>		1 accept 64-3					
			28 [Al acc	-	· - 1				
							70		
	(p)		=	f secondary st	idents who spe	ent more than	70 min		
	<u> </u>	on social media per day.							
		Number of students who spent more than $70min = 80 - 68$ [M1 accept $80 - 67$]							
		Percentage = 15% [A1 accept 16.25%]							
	(-)								
	(c)	Complete the grouped frequency table for the time spent on social media.							
		Time	$0 \le x < 20$	$20 \le x < 40$	$40 \le x < 60$	$60 \le x < 80$	80 ≤ x ·	< 100	
		(min)	6	20	30	20	4		
	 	Frequency	U	20	<u> 30</u>	<u> </u>	<u> </u>		
		[B1 for all 3 correct values]							
	(1)								
	(d)	Calculate an estimate of the mean time spent on social media.							
		Mean = $\frac{10 \times 6 + 30 \times 20 + 50 \times 30 + 70 \times 20 + 90 \times 4}{80}$							
		Mean = 49 [Bi/ecf]							
	(e)		alculate an estimate of the standard deviation.						
		SD = 20.0 [B1/ecf]							
	(f)	Explain why	the mean an	d standard dev	viation are esti	mates.			
	1	We do not k	now the exac	t time each stu	ident spent on	social media.	[B1]		
		or							
		Mid-values are used in the calculation. [B1]							
	1								





He wanted a walking space of at least 30 cm to be all around when the hammock is placed at the balcony.

Show, with appropriate working, if he should buy this hammock.

[M1 for evidence of 30 cm, 50 cm, 30 cm or 110 cm]

$$\frac{x}{55} = \frac{30}{110}$$

x = 15 cm [M1 for applying similar triangles]

narrowest distance = 15 + 4 = 19 cm

He should not buy the hammock. [A1 - ecf]

(c)	1 (C)		the flooring for the whole apartment.				
	They wanted the whole apartment to have the same flooring.						
	The cost of different types of flooring materials and the cost of installation						
	are found in the tables below.						
	Cost of different types of flooring materials						
	<u> </u>	Cost per square fo	DOT				
	Vinyl flooring						
	Porcelain tiles	\$3 - \$5					
	https://www.homere	enoguru sg/articles/rer	ovation-essentials/flooring-singapore/				
Charles Manager	Cost of flooring ins	tallation by materia					
	Type of flooring		Cost per square foot				
	Vinyl flooring		\$4 - \$8				
	Porcelain tiles		\$7-\$11				
	I I	dvisor.com/cost/floori	(The second sec				
	Which type of flo	oring should they	o for if they have limited budget?	-			
		Suggest a suitable budget for Xavier and his wife.					
		ng clearly stating y					
	$1 \text{ m}^2 = 10.7639 \text{ ft}^2$						
	Area of floor plan = $11 \times 11 + \frac{1}{2}(5+7) \times 2 + 3 \times 3$						
a por constant de la	i.	$= 142 \text{ cm}^2 \text{ [M1]}$					
	142 cm ² : 42.955 m ² [M1 for finding actual area in either m ² or cm ²]						
	$42.955 \text{ m}^2 = 463 \text{ f}$						
	[M1 for convertin	g to square feet and	l rounding up]				
	Vinvl		,				
	£	$-$8 \times 463 = 6945	[assume highest in range]				
	Cost = $$5.5 \times 463 + $6 \times 463 = 5324.50 [assume mid-point]						
	;		[assume lowest in range]				
	Procelain						
	$\frac{110000000}{\text{Cost} = \$5 \times 463 + \$11 \times 463 = \$7408 \text{ [assume highest in range]}}$						
	$Cost = $4 \times 463 + $9 \times 463 = $6019 $ [assume highest in range]						
	$Cost = $3 \times 463 + $7 \times 463 = 4630 [assume lowest in range]						
	Section 1997						
	[M1 for calculating total cost for Vinyl and Procelain]						
	Type of flooring: Vinyl						
	Budget: \$6945 [Highest value in range.]						
	Or \$5324.50 [Mid-point] or \$3704 [lowest range]						
	Accept other reasonable budget provided working is clear						
	[A1 – for correct type of flooring and corresponding budget]						
	Assumtpion: Assume the highest value in the range for materials and						
		ok to assume mid-					